

Co-located in-situ and multifrequency radar observations of ice clouds over the UK

Jonny Crosier^{1,2}, James Dorsey^{1,2}, Chris Westbrook³, Ryan Neely III^{1,4}, Jacob Fugal⁵ and Richard Cotton⁶

¹National Centre for Atmospheric Science, UK

²SEES, University of Manchester, UK

³Dept. of Meteorology, University of Reading, UK

⁴School of Earth Environment, University of Leeds, UK

⁵Max Planc Institute for Chemistry, Mainz, Germany

⁶Met Office, Exeter, UK

Parameterizing Ice Clouds using Airborne obServationS and triple-frequency dOppler radar

Project Summary

- Coordinated triple frequency radar scans of large ice clouds
- Co-located airborne in-situ observations of microphysical properties
- Observations collected near the Chilbolton site in the UK
- Data collection: January-February, and April 2018

Parameterizing Ice Clouds using Airborne obServationS and triple-frequency dOppler radar

Objectives

- Obtain a dataset of ice cloud properties using co-located triple-frequency radar and in-situ airborne observations.
- Develop new multi-frequency radar retrievals of cloud properties, and evaluate existing dual and single frequency operational retrievals
- Investigate and parameterize cloud processes and properties, and compare observations with operational models to identify systematic biases
- Test microwave scattering models using triple wavelength radar analysis

- •Two detachments to Cranfield during January-April 2018.
- •Flight sorties along Chilbolton 255°/270° radial from CFARR.
- •NERC funding for 60 flight hours + 30 from Met Office.
- •Coordinated flights with GPM overpasses, where possible.

Other radars at Chilbolton

Mobile Ka Band

Mobile X-Band

UK Met Office Radar Network

- 18 operational C-band, Dual Pol, Doppler radars
- 1 additional "research" radar 50km from Chilbolton

- S, Ka and W band synchronized RHI + PPI scans
- Additional Ka vertical pointing radar
- Additional X band doing weather surveillance and additional RHIs
- Full doppler spectra on all radars, dual pol on all except ?94? GHz.
- Typical beam width 0.25 deg, <100m range gates

BAe146

Typical endurance: 5 hours

Ceiling: 10-11km

Airspeed: 120 ms⁻¹

In-situ cloud probes

- Mie scattering probes for cloud droplets (CDP, FFSSP)
- Optical array probes for medium-large particles (2DS, HVPS)
- High resolution CCD images of ice crystals (CPI)
- •"New" (!untested!) bulk water sensor for accurate IWC (up to 10g/m³)
- •Holographic imager with small particle phase discrimination

HALO-HOLO holographic imager

Courtesy of Jacob Fugal + Stefan Borrmann at Mainz.

Jacob Fuga

ISMAR

International Sub-Millimetre Airborne Radiometer

Reservations of the second sec

Submillimetre Sensitivity to Ice Cloud

- Demonstrator for future ESA "Ice cloud imager" mission
- 118, 243 (V/H), 325, 424, 448, 664 (V/H) and 874 GHz (V/H)

Scientific questions

- •What is the shape of the particle size distribution (PSD) in ice clouds?
- •How does ice and snow particle density vary with particle size?
- Over what temporal and spatial scales does the PSD and particle density vary?
- How do changes in environmental conditions affect the PSD and particle density?
- •What level of complexity is required to model the scattering of electromagnetic waves by ice and snow?
- •How do observed micro/macro-physical characteristics, and their variability, compare with numerical simulations?
- •How do observed micro/macro-physical characteristics, and their variability, compare with remote sensing retirevals?

Previous triple frequency studies in the UK

Previous triple frequency studies in the UK

Stein et al, 2015, GRL

Previous joint Airborne-Radar studies in the UK

Crosier et al, 2014, QJRMS

Previous joint Airborne-Radar studies in the UK

Crosier et al, 2014, QJRMS

Previous joint Airborne-Radar studies in the UK

Crosier et al, 2014, QJRMS

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL073441

Key Points:

- Ice lollies form when a columnar ice crystal collides with a large water droplet
- Ice-lolly formation rates are highest in

Ice lollies: An ice particle generated in supercooled conveyor belts

S. Ch. Keppas¹, J. Crosier^{1,2}, T. W. Choularton¹, and K. N. Bower¹

¹Centre for Atmospheric Sciences, SEES, University of Manchester, Manchester, UK, ²National Centre for Atmospheric Science, University of Manchester, Manchester, UK

The impact of generating cells on ZDR and particle types

Doppler spectra

Summary

- PICASSO will take place in Jan-April 2018
- Studying the properties of stratiform ice clouds near Chilbolton in the UK (+ some embedded convection)
- Synchronised RHIs at W, Ka and S-band
- Additional data at X and Ka#2
- Aircraft data with enhanced observations, including large particles (HVPS3), small ice (HALO-HOLO) and "improved" bulk water (SEA WCM-2000)
- We will target GPM overpasses
- Open to collaborations